Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Med Virol ; 95(4): e28756, 2023 04.
Article in English | MEDLINE | ID: covidwho-2294148

ABSTRACT

Chinese guidelines prioritize the use of Azvudine and nirmatrelvir-ritonavir in COVID-19 patients. Nevertheless, the real-world effectiveness of Azvudine versus nirmatrelvir-ritonavir is still lacking, despite clinical trials showing their effectiveness compared with matched controls. To compare the effectiveness of Azvudine versus nirmatrelvir-ritonavir treatments in real-world clinical practice, we identified 2118 hospitalized COVID-19 patients, with a follow-up of up to 38 days. After exclusions and propensity score matching, we included 281 Azvudine recipients and 281 nirmatrelvir-ritonavir recipients who did not receive oxygen therapy at admission. The lower crude incidence rate of composite disease progression outcome (7.83 vs. 14.83 per 1000 person-days, p = 0.026) and all-cause death (2.05 vs. 5.78 per 1000 person-days, p = 0.052) were observed among Azvudine recipients. Azvudine was associated with lower risks of composite disease progression outcome (hazard ratio [HR]: 0.55; 95% confidence interval [CI]: 0.32-0.94) and all-cause death (HR: 0.40; 95% CI: 0.16-1.04). In subgroup analyses, the results of composite outcome retained significance among patients aged <65 years, those having a history of disease, those with severe COVID-19 at admission, and those receiving antibiotics. These findings suggest that Azvudine treatment showed effectiveness in hospitalized COVID-19 patients compared with nirmatrelvir-ritonavir in terms of composite disease progression outcome.


Subject(s)
COVID-19 , Humans , COVID-19 Drug Treatment , Retrospective Studies , Ritonavir/therapeutic use , Disease Progression , Antiviral Agents/therapeutic use
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(12): 1695-1703, 2022 Dec 28.
Article in English, Chinese | MEDLINE | ID: covidwho-2232513

ABSTRACT

OBJECTIVES: Coronavirus disease 2019 (COVID-19) in elderly and patients with chronic respiratory diseases (COPD) had a poor prognosis. COPD is one of the most common chronic respiratory diseases. We explore the epidemiological characteristics of patients with severe COVID-19 with COPD patients in order to provide medical evidence for the prevention and treatment of severe COVID-19. METHODS: We retrospectively analyzed the clinical baseline characteristics, treatment strategies, disease progression and prognosis of 557 severe COVID-19 patients admitted to the West Court of Union Hospital of Huazhong University of Science and Technology from January 29, 2020 to April 8, 2020. RESULTS: A total of 465 patients with severe COVID-19 were enrolled in the study, including 248 (53.3%) males and 217 (46.7%) females. The median age of severe COVID-19 patients was 62.0 years, and 53 patients were complicated with COPD. Common symptoms at the onset included fever (78.5%), dry cough (67.1%), shortness of breath (47.3%) and fatigue (40.9%). Compared with non-COPD patients, patients with COPD had significantly lower levels of SpO2 in admission (90.0% vs 92.0%, P=0.014). In terms of laboratory examinations, patients with COPD had higher levels of C-reactive protein, interleukin-6, procalcitonin, total bilirubin, blood urea nitrogen, serum creatinine, lipoprotein (a), high-sensitivity troponin I, and D-dimer, while had lower levels of platelet counts, albumin and apolipoprotein AI. Severe COVID-19 patients with COPD had higher Sequential Organ Failure Assessment scores [3.0(2.0, 3.0) vs 2.0(2.0, 3.0), P=0.038] and CURB-65 score [1.0(1.0, 2.0) vs1.0(0.0, 1.0), P<0.001], and a higher proportion of progressing to critical illness (28.3% vs 10.0%, P<0.001) with more complications [e.g. septic shock (15.1% vs 6.1%, P=0.034)], had higher incidence rates of antibiotic therapies (90.6% vs 77.2%, P=0.025), non-invasive (11.3% vs 1.7%, P<0.001) and invasive mechanical ventilation (17.0% vs 8.3%, P=0.039), ICU admission (17.0% vs 7.5%, P=0.021) and death (15.1% vs 6.1%, P=0.016). Cox proportion hazard model was carried out, and the results showed that comorbid COPD was an independent risk factor for severe COVID-19 patients progressing to critical type, after adjusting for age and gender [adjusted hazard ratio (AHR)=2.38(1.30-4.37), P=0.005] and additionally adjusting for chronic kidney diseases, hypertension, coronary heart disease [AHR=2.63(1.45-4.77), P<0.001], or additionally adjusting for some statistically significant laboratory findings [AHR=2.10(1.13-3.89), P=0.018]. CONCLUSIONS: Severe COVID-19 patients with COPD have higher levels of disease severity, proportion of progression to critical illness and mortality rate. Individualized treatment strategies should be adopted to improve the prognosis of severe COVID-19 patients.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Male , Female , Humans , Aged , Middle Aged , COVID-19/complications , SARS-CoV-2 , Retrospective Studies , Critical Illness , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology
3.
Front Med (Lausanne) ; 9: 817689, 2022.
Article in English | MEDLINE | ID: covidwho-2198956

ABSTRACT

The coronavirus disease (COVID-19) pandemic has significantly increased the number of patients with acute respiratory distress syndrome (ARDS), necessitating respiratory support. This strain on intensive care unit (ICU) resources forces clinicians to limit the use of mechanical ventilation by seeking novel therapeutic strategies. Awake-prone positioning appears to be a safe and tolerable intervention for non-intubated patients with hypoxemic respiratory failure. Meanwhile, several observational studies and meta-analyses have reported the early use of prone positioning in awake patients with COVID-19-related ARDS (C-ARDS) for improving oxygenation levels and preventing ICU transfers. Indeed, some international guidelines have recommended the early application of awake-prone positioning in patients with hypoxemic respiratory failure attributable to C-ARDS. However, its effectiveness in reducing intubation rate, mortality, applied timing, and optimal duration is unclear. High-quality evidence of awake-prone positioning for hypoxemic patients with COVID-19 is still lacking. Therefore, this article provides an update on the current state of published literature about the physiological rationale, effect, timing, duration, and populations that might benefit from awake proning. Moreover, the risks and adverse effects of awake-prone positioning were also investigated. This work will guide future studies and aid clinicians in deciding on better treatment plans.

4.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1696189

ABSTRACT

The coronavirus disease (COVID-19) pandemic has significantly increased the number of patients with acute respiratory distress syndrome (ARDS), necessitating respiratory support. This strain on intensive care unit (ICU) resources forces clinicians to limit the use of mechanical ventilation by seeking novel therapeutic strategies. Awake-prone positioning appears to be a safe and tolerable intervention for non-intubated patients with hypoxemic respiratory failure. Meanwhile, several observational studies and meta-analyses have reported the early use of prone positioning in awake patients with COVID-19-related ARDS (C-ARDS) for improving oxygenation levels and preventing ICU transfers. Indeed, some international guidelines have recommended the early application of awake-prone positioning in patients with hypoxemic respiratory failure attributable to C-ARDS. However, its effectiveness in reducing intubation rate, mortality, applied timing, and optimal duration is unclear. High-quality evidence of awake-prone positioning for hypoxemic patients with COVID-19 is still lacking. Therefore, this article provides an update on the current state of published literature about the physiological rationale, effect, timing, duration, and populations that might benefit from awake proning. Moreover, the risks and adverse effects of awake-prone positioning were also investigated. This work will guide future studies and aid clinicians in deciding on better treatment plans.

5.
Dis Markers ; 2021: 6304189, 2021.
Article in English | MEDLINE | ID: covidwho-1553755

ABSTRACT

BACKGROUND: Early identification of patients with severe coronavirus disease (COVID-19) at an increased risk of progression may promote more individualized treatment schemes and optimize the use of medical resources. This study is aimed at investigating the utility of the C-reactive protein to albumin (CRP/Alb) ratio for early risk stratification of patients. METHODS: We retrospectively reviewed 557 patients with COVID-19 with confirmed outcomes (discharged or deceased) admitted to the West Court of Union Hospital, Wuhan, China, between January 29, 2020 and April 8, 2020. Patients with severe COVID-19 (n = 465) were divided into stable (n = 409) and progressive (n = 56) groups according to whether they progressed to critical illness or death during hospitalization. To predict disease progression, the CRP/Alb ratio was evaluated on admission. RESULTS: The levels of new biomarkers, including neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, CRP/Alb ratio, and systemic immune-inflammation index, were higher in patients with progressive disease than in those with stable disease. Correlation analysis showed that the CRP/Alb ratio had the strongest positive correlation with the sequential organ failure assessment score and length of hospital stay in survivors. Multivariate logistic regression analysis showed that percutaneous oxygen saturation (SpO2), D-dimer levels, and the CRP/Alb ratio were risk factors for disease progression. To predict clinical progression, the areas under the receiver operating characteristic curves of Alb, CRP, CRP/Alb ratio, SpO2, and D-dimer were 0.769, 0.838, 0.866, 0.107, and 0.748, respectively. Moreover, patients with a high CRP/Alb ratio (≥1.843) had a markedly higher rate of clinical deterioration (log - rank p < 0.001). A higher CRP/Alb ratio (≥1.843) was also closely associated with higher rates of hospital mortality, ICU admission, invasive mechanical ventilation, and a longer hospital stay. CONCLUSION: The CRP/Alb ratio can predict the risk of progression to critical disease or death early, providing a promising prognostic biomarker for risk stratification and clinical management of patients with severe COVID-19.


Subject(s)
C-Reactive Protein/metabolism , COVID-19/diagnosis , Coronary Disease/diagnosis , Hypertension/diagnosis , Pulmonary Disease, Chronic Obstructive/diagnosis , SARS-CoV-2/pathogenicity , Serum Albumin, Human/metabolism , Aged , Area Under Curve , Biomarkers/blood , Blood Platelets/pathology , Blood Platelets/virology , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , China/epidemiology , Comorbidity , Coronary Disease/epidemiology , Coronary Disease/mortality , Coronary Disease/virology , Disease Progression , Early Diagnosis , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Hypertension/epidemiology , Hypertension/mortality , Hypertension/virology , Length of Stay/statistics & numerical data , Lymphocytes/pathology , Lymphocytes/virology , Male , Middle Aged , Neutrophils/pathology , Neutrophils/virology , Prognosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/mortality , Pulmonary Disease, Chronic Obstructive/virology , ROC Curve , Retrospective Studies , SARS-CoV-2/growth & development , Severity of Illness Index , Survival Analysis
6.
Clin Chim Acta ; 517: 66-73, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1101131

ABSTRACT

BACKGROUND: We investigated the dynamic changes in lipid profiles and their correlations with disease severity and clinical outcome in patients with severe COVID-19. METHODS: We retrospectively reviewed 519 severe COVID-19 patients with confirmed outcomes (discharged or deceased), admitted to the West Court of Union Hospital in Wuhan, China, between 29 January and 8 April 2020. RESULTS: Altogether, 424 severe COVID-19 patients, including 34 non-survivors and 390 survivors, were included in the final analyses. During hospitalization, low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) showed an increasing trend in survivors, but showed a downward trend in non-survivors. The serum concentrations of HDL-C and apoA-I were inversely correlated with C-reactive protein (CRP), length of hospital stay of survivors, and disease severity scores. For in-hospital deaths, the areas under the receiver operating characteristic curves (AUCs) of the ratios of CRP/HDL-C and CRP/apoA-I at admission were 0.84 and 0.83, respectively. Moreover, patients with high ratios of CRP/HDL-C (>77.39) or CRP/apoA-I (>72.37) had higher mortality rates during hospitalization (log-rank p < 0.001). Logistic regression analysis demonstrated that hypertension, lactate dehydrogenase, SOFA score, and High CRP/HDL-C ratio were independent predictors of in-hospital mortality. CONCLUSIONS: During severe COVID-19, HDL-C and apoA-I concentrations are dramatically decreased in non-survivors. Moreover, High CRP/HDL-C ratio is significantly associated with an increase in mortality and a poor prognosis.


Subject(s)
COVID-19 , Lipid Metabolism , Aged , Apolipoprotein A-I/blood , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/mortality , COVID-19/physiopathology , China , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies
7.
Trials ; 21(1): 999, 2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-958044

ABSTRACT

OBJECTIVES: A severe epidemic of COVID-19 has broken out in China and has become a major global public health event. We focus on the Acute Respiratory Distress Syndrome (ARDS)-like changes and overactivation of Th17 cells (these produce cytokines) in patients with COVID-19. We aim to explore the safety and efficacy of ixekizumab (an injectable drug for the treatment of autoimmune diseases) to prevent organ injury caused by the immune response to COVID-19. Ixekizumab is a human monoclonal antibody that binds to interleukin-17A and inhibits the release of pro-inflammatory cytokines and chemokines. TRIAL DESIGN: The experiment is divided into two stages. In the first stage, the open trial, 3 patients with COVID-19 are treated with ixekizumab, and the safety and efficacy are observed for 7 days. In the second stage, 40 patients with COVID-19 are randomly divided into two groups at 1:1 for 14 days. This is a two-center, open-label, randomized controlled pilot trial with 2-arm parallel group design (1:1 ratio). PARTICIPANTS: Patients with COVID-19 aged 18-75 with increased Interleukin (IL)-6 levels will be enrolled, but patients with severe infections requiring intensive care will be excluded. The trial will be undertaken in two centers. The first stage is carried out in Xiangya Hospital of Central South University, and the second stage is carried out simultaneously in the Third Xiangya Hospital of Central South University. INTERVENTION AND COMPARATOR: In the first stage, three subjects are given ixekizumab ("Taltz") (80 mg/ml, 160 mg as a single hypodermic injection) and antiviral therapy (α-interferon (administer 5 million U by aerosol inhalation twice daily), lopinavir/ritonavir (administer 100mg by mouth twice daily, for the course of therapy no more than 10 days), chloroquine (administer 500mg by mouth twice daily, for the course of therapy no more than 10 days), ribavirin (administer 500mg by intravenous injection two to three times a day, for the course of therapy no more than 10 days), or arbidol (administer 200mg by mouth three times a day, for the course of therapy no more than 10 days), but not more than 3 types). The treatment course of the first stage is 7 days. In the second stage, 40 randomized patients will receive the following treatments--Group 1: ixekizumab (80 mg/ml, 160 mg as a single hypodermic injection) with antiviral therapy (the same scheme as in the first stage); Group 2: antiviral therapy alone (the same scheme as in the first stage). The length of the second treatment course is 14 days. MAIN OUTCOMES: The primary outcome is a change in pulmonary CT severity score (an imaging tool for assessing COVID-19, which scores on the basis of all abnormal areas involved). Pulmonary CT severity score is assessed on the 7th day, 14th day, or at discharge. RANDOMISATION: In the second stage, 40 patients with COVID-19 are randomly divided into two groups at 1:1 for 14 days. The eLite random system of Nanjing Medical University is used for randomization. BLINDING (MASKING): The main efficacy indicator, the CT results, will be evaluated by the third-party blinded and independent research team. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): In the second stage, 40 patients with COVID-19 are randomly divided into two groups at 1:1 for 14 days. TRIAL STATUS: Trial registration number is ChiCTR2000030703 (version 1.7 as of March 19, 2020). The recruitment is ongoing, and the date recruitment was initiated in June 2020. The anticipated date of the end of data collection is June 2021. TRIAL REGISTRATION: The name of the trial register is the Chinese Clinical Trial Registry. The trial registration number is ChiCTR2000030703 ( http://www.chictr.org.cn/ ). The date of trial registration is 10 March 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting the dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adult , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Case-Control Studies , China/epidemiology , Chloroquine/administration & dosage , Chloroquine/therapeutic use , Drug Therapy, Combination , Humans , Indoles/administration & dosage , Indoles/therapeutic use , Interleukin-17/immunology , Lopinavir/administration & dosage , Lopinavir/therapeutic use , Middle Aged , Ribavirin/administration & dosage , Ribavirin/therapeutic use , Ritonavir/administration & dosage , Ritonavir/therapeutic use , SARS-CoV-2/genetics , Safety , Th17 Cells/immunology , Treatment Outcome
8.
Mol Cell Endocrinol ; 521: 111097, 2021 02 05.
Article in English | MEDLINE | ID: covidwho-955992

ABSTRACT

BACKGROUND: Coronavirus disease (COVID-19) has resulted in considerable morbidity and mortality worldwide. Thyroid hormones play a key role in modulating metabolism and the immune system. However, the prevalence of thyroid dysfunction (TD) and its association with the prognosis of COVID-19 have not yet been elucidated. In this study, we seek to address this gap and understand the link between TD and COVID-19. METHODS: Herein, we enrolled patients who were hospitalized with COVID-19 and had normal or abnormal thyroid function test results at the West Court of Union Hospital in Wuhan, China, between 29 January and February 26, 2020. We carried out follow up examinations until April 26, 2020. Data on clinical features, treatment strategies, and prognosis were collected and analyzed. TD was defined as an abnormal thyroid function test result, including overt thyrotoxicosis, overt hypothyroidism, subclinical hypothyroidism, subclinical hyperthyroidism, and euthyroid sick syndrome. RESULTS: A total of 25 and 46 COVID-19 patients with and without TD, respectively, were included in the study. COVID-19 patients with TD had significantly higher neutrophil counts and higher levels of C-reactive protein, procalcitonin, lactate dehydrogenase, serum creatine kinase, aspartate transaminase, and high-sensitive troponin I and a longer activated partial thromboplastin time but lower lymphocyte, platelet, and eosinophil counts. A longitudinal analysis of serum biomarkers showed that patients with TD presented persistently high levels of biomarkers for inflammatory response and cardiac injury. COVID-19 patients with TD were more likely to develop a critical subtype of the disease. Patients with TD had a significantly higher fatality rate than did those without TD during hospitalization (20% vs 0%, P = 0.002). Patients with TD were more likely to stay in the hospital for more than 28 days than were those without TD (80% vs 56.52%, P = 0.048). CONCLUSIONS: Our preliminary findings suggest that TD is associated with poor outcomes in patients with COVID-19.


Subject(s)
COVID-19/physiopathology , Thyroid Diseases/physiopathology , Thyroid Gland/physiopathology , Aged , COVID-19/complications , COVID-19/mortality , China/epidemiology , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Thyroid Diseases/complications , Thyroid Function Tests
9.
Aging (Albany NY) ; 12(21): 20982-20996, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-918566

ABSTRACT

Elderly patients with coronavirus disease 2019 (COVID-19) are more likely to develop severe or critical pneumonia, with a high fatality rate. To date, there is no model to predict the severity of COVID-19 in elderly patients. In this study, patients who maintained a non-severe condition and patients who progressed to severe or critical COVID-19 during hospitalization were assigned to the non-severe and severe groups, respectively. Based on the admission data of these two groups in the training cohort, albumin (odds ratio [OR] = 0.871, 95% confidence interval [CI]: 0.809 - 0.937, P < 0.001), d-dimer (OR = 1.289, 95% CI: 1.042 - 1.594, P = 0.019) and onset to hospitalization time (OR = 0.935, 95% CI: 0.895 - 0.977, P = 0.003) were identified as significant predictors for the severity of COVID-19 in elderly patients. By combining these predictors, an effective risk nomogram was established for accurate individualized assessment of the severity of COVID-19 in elderly patients. The concordance index of the nomogram was 0.800 in the training cohort and 0.774 in the validation cohort. The calibration curve demonstrated excellent consistency between the prediction of our nomogram and the observed curve. Decision curve analysis further showed that our nomogram conferred significantly high clinical net benefit. Collectively, our nomogram will facilitate early appropriate supportive care and better use of medical resources and finally reduce the poor outcomes of elderly COVID-19 patients.


Subject(s)
COVID-19 , Critical Illness/mortality , Pneumonia, Viral , Risk Assessment/methods , Aged , COVID-19/diagnosis , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , China/epidemiology , Geriatric Assessment/methods , Hospitalization/statistics & numerical data , Humans , Patient Selection , Pneumonia, Viral/diagnosis , Pneumonia, Viral/etiology , Pneumonia, Viral/mortality , Predictive Value of Tests , Prognosis , SARS-CoV-2/isolation & purification , Severity of Illness Index
10.
Infect Dis Ther ; 9(4): 1003-1015, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-917172

ABSTRACT

BACKGROUND: Metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid (BALF) has the potential to improve the pathogen identification in severe community-acquired pneumonia (SCAP). METHODS: In this 1.5-year, multicenter, prospective study, we investigated the usefulness of mNGS of BALF for identifying pathogens of SCAP in hospitalized adults, comparing it with other laboratory methods. RESULTS: Of 329 SCAP adults, a microbial etiology was established in 304 cases (92.4%). The overall microbial yield was 90.3% for mNGS versus 39.5% for other methods (P < 0.05). The most frequently detected pathogens in immunocompetent patients were Streptococcus pneumoniae (14.8%), rhinovirus (9.8%), Haemophilus influenzae (9.1%), Staphylococcus aureus (8.7%), and Chlamydia psittaci (8.0%), while in immunocompromised patients they were Pneumocystis jirovecii (44.6%), Klebsiella pneumoniae (18.5%), Streptococcus pneumoniae (15.4%), Haemophilus influenzae (13.8%), and Pseudomonas aeruginosa (13.8%). Notably, novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified from two patients solely by mNGS in January 2020; uncommon pathogens including Orientia tsutsugamushi and Nocardia otitidiscaviarum were identified from one patient, respectively. Furthermore, mixed infections were detected in 56.8% of the patients. CONCLUSIONS: A high microbial detection rate was achieved in SCAP adults using mNGS testing of BALF. The most frequently detected pathogens of SCAP differed between immunocompetent and immunocompromised patients. mNGS testing may be an powerful tool for early identification of potential pathogens for SCAP to initiate a precise antimicrobial therapy.

11.
Ther Adv Respir Dis ; 14: 1753466620963017, 2020.
Article in English | MEDLINE | ID: covidwho-873870

ABSTRACT

OBJECTIVE: To identify potential predictors for invasive and non-invasive mechanical ventilation in coronavirus disease 2019 (COVID-19) patients. METHODS: This study retrospectively analyzes data of 516 patients with confirmed COVID-19, who were categorized into three groups based on which mechanical ventilation method was used during the hospitalization period. RESULTS: Among 516 confirmed cases with COVID-19, 446 patients did not receive mechanical ventilation, 38 patients received invasive mechanical ventilation (IMV) and 32 received non-invasive mechanical ventilation (NIMV). The median age of the included patients was 61 years old (interquartile range, 52-69). A total of 432 patients had one or more coexisting illnesses. The main clinical symptoms included fever (79.46%), dry cough (66.47%) and shortness of breath (46.90%). IMV and NIMV patients included more men, more coexisting illnesses and received more medication. Patients in the IMV group and NIMV had higher leukocyte and neutrophil count, lower lymphocyte count, higher aspartate aminotransferase (AST), lactate dehydrogenase (LDH), C-reactive protein (CRP), procalcitonin (PCT) and D-dimer levels and lower albumin (ALB) level. The univariate and multiple logistic regression analysis showed that the use of glucocorticoid, increased neutrophil count and LDH had a predictive role as indicators for IMV, and the use of glucocorticoid, increased neutrophil count and PCT had a predictive role as indicators for NIMV. The area under the curve (AUC) of use of glucocorticoid, increased neutrophil count and LDH was 0.885 (95% confidence interval (CI) 0.838-0.933, p < 0.0001), which provided the specificity and sensitivity 77.7% and 90.9%, respectively. AUC of the use of glucocorticoid, increased neutrophil count and PCT for NIMV was 0.888 (95% CI 0.825-0.952, p < 0.0001), which provided the specificity and sensitivity 70.3% and 96.4%, respectively. CONCLUSION: Glucocorticoid, increased neutrophil and LDH were predictive indicators for IMV, whereas glucocorticoid, increased neutrophil and PCT were predictive indicators for NIMV. In addition, the above-mentioned mediators had the most predictive meaning for mechanical ventilation when combined.The reviews of this paper are available via the supplemental material section.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Respiration, Artificial , Respiratory Insufficiency/therapy , Aged , COVID-19 , Coronavirus Infections/diagnosis , Female , Glucocorticoids/therapeutic use , Hospitalization , Humans , Logistic Models , Male , Middle Aged , Neutrophils , Pandemics , Pneumonia, Viral/diagnosis , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/virology , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity
12.
Infect Drug Resist ; 13: 3401-3408, 2020.
Article in English | MEDLINE | ID: covidwho-844444

ABSTRACT

BACKGROUND: The pandemic of coronavirus disease 2019 (COVID-19) has become a global public health problem. It is important for clinical physicians to differentiate COVID-19 from other respiratory infectious diseases caused by viruses, such as human adenovirus. SUBJECTS AND METHODS: This was a retrospective observational study. We analyzed and compared the clinical manifestations, laboratory findings and radiological features of two independent cohorts of patients diagnosed with either COVID-19 (n=36) or adenovirus pneumonia (n=18). RESULTS: COVID-19 did not show a preference in males or females, whereas 94.4% of patients with adenovirus pneumonia were males. Fever and cough were common in both COVID-19 and adenovirus pneumonia. But the median maximal body temperature of the adenovirus pneumonia cohort was significantly higher than in COVID-19 (P<0.001). Furthermore, 77.8% of patients with adenovirus pneumonia had a productive cough versus only 13.9% of COVID-19 patients (P<0.001). Compared with adenovirus pneumonia, constitutional symptoms were less common in COVID-19, including headache (16.7% vs 38.9%, P=0.072), sore throat (8.3% vs 27.8%, P=0.058), myalgia (8.3% vs 61.1%, P<0.001) and diarrhea (8.3% vs 44.4%, P=0.002). Furthermore, patients with COVID-19 were less likely to develop respiratory failure (8.3% vs 83.3%, P<0.001) and showed less prominent laboratory abnormalities, including lymphocytopenia (61.1% vs 88.9%, P=0.035), thrombocytopenia (2.8% vs 61.1%, P<0.001), elevated procalcitonin (2.8% vs 77.8%, P<0.001) and elevated C-reactive protein (36.1% vs 100%, P<0.001). Besides, a higher percentage of patients with adenovirus pneumonia showed elevated transaminase, myocardial enzymes, creatinine and D-dimer compared with COVID-19 patients. On chest CT, the COVID-19 cohort was characterized by peripherally distributed ground-glass opacity and patchy shadowing, while the adenovirus pneumonia cohort frequently presented with consolidation and pleural effusion. CONCLUSION: There were many differences between patients diagnosed with COVID-19 and those with adenovirus pneumonia in their clinical, laboratory and radiological characteristics. Compared with adenovirus pneumonia, COVID-19 patients tended to show a lower severity of illness.

13.
Diabetes Res Clin Pract ; 165: 108227, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-326866

ABSTRACT

AIMS: The 2019 novel coronavirus disease (COVID-19) emerged in Wuhan, China, and was characterized as a pandemic by the World Health Organization. Diabetes is an established risk associated with poor clinical outcomes, but the association of diabetes with COVID-19 has not been reported yet. METHODS: In this cohort study, we retrospectively reviewed 258 consecutive hospitalized COVID-19 patients with or without diabetes at the West Court of Union Hospital in Wuhan, China, recruited from January 29 to February 12, 2020. The clinical features, treatment strategies and prognosis data were collected and analyzed. Prognosis was followed up until March 12, 2020. RESULTS: Of the 258 hospitalized patients (63 with diabetes) with COVID-19, the median age was 64 years (range 23-91), and 138 (53.5%) were male. Common symptoms included fever (82.2%), dry cough (67.1%), polypnea (48.1%), and fatigue (38%). Patients with diabetes had significantly higher leucocyte and neutrophil counts, and higher levels of fasting blood glucose, serum creatinine, urea nitrogen and creatine kinase isoenzyme MB at admission compared with those without diabetes. COVID-19 patients with diabetes were more likely to develop severe or critical disease conditions with more complications, and had higher incidence rates of antibiotic therapy, non-invasive and invasive mechanical ventilation, and death (11.1% vs. 4.1%). Cox proportional hazard model showed that diabetes (adjusted hazard ratio [aHR] = 3.64; 95% confidence interval [CI]: 1.09, 12.21) and fasting blood glucose (aHR = 1.19; 95% CI: 1.08, 1.31) were associated with the fatality due to COVID-19, adjusting for potential confounders. CONCLUSIONS: Diabetes mellitus is associated with increased disease severity and a higher risk of mortality in patients with COVID-19.


Subject(s)
Coronavirus Infections/complications , Diabetes Mellitus/virology , Pneumonia, Viral/complications , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Cough/virology , Fatigue/virology , Female , Fever/virology , Hospitalization , Humans , Male , Middle Aged , Pandemics , Prognosis , Proportional Hazards Models , Retrospective Studies , Risk , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL